式与方程教学设计
作为一名无私奉献的老师,通常需要准备好一份教学设计,借助教学设计可以让教学工作更加有效地进行。怎样写教学设计才更能起到其作用呢?下面是小编为大家收集的式与方程教学设计,欢迎大家分享。
式与方程教学设计1一、教材分析
【复习内容】
教科书第12册92页“整理与反思”和92-93页“练习与实践”1~6。
【知识要点】
1.用字母表示数:(1)表示运算律;(2)表示计算公式;(3)表示一般数量关系。
2.方程与等式的关系:方程一定是等式,但等式不一定是方程。
3.方程、方程的解与解方程的区别:
方程:含有未知数的等式(是一个等式)。
方程的解:使方程左右两边相等的未知数的值(是一个值)。
解方程:求出方程中未知数的值的过程(是一个过程)。
4.等式的性质:
(1)等式的两边同时加上或减去同一个数,所得结果仍然是等式。
(2)等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。
5.列方程解决实际问题。
【教学目标】
1.使学生进一步理解用字母表示数的作用和等式的性质,体会用字母表示数的简洁性,渗透初步的代数思想。在比较中进一步加深对方程、方程的解及解方程的区别、方程与等式的关系的理解。
……此处隐藏2170个字……=b。
解:30÷30×X=15÷30 运用了等式的性质,回忆等式的性质2。
X=15÷30 可以省去上面一步。
X=0.5
联想等式的性质1,回忆简单方程的类型,X±a=b。
例: 50X-30=52 把50X看作一个数,说明也是转化思想。
解:50X-30+30=52+30 运用等式的性质1。
50X=52+30 可以省去上面一步。
50X=82
X=82÷50 运用等式的性质2.
X=1.64
回忆验算的方法,并选择题目验算;比较呈现方程的异同,正确选择解方程的方法。
⑷解决问题。
学生自主完成“练习与实践”第3-6题,教师巡视;引导学生用方程思考,体会列方程的思考方法;介绍其它解答方法,体会转化的策略和方法。
“练习与实践”第3题,抓住重点句子的理解,重点句子是“现在能收看的56套节目,比开通有线电视前的5倍少4套”,列出方程,体会隐含在句子中的数量关系式,并沟通和算式之间的联系。
“练习与实践”第4题,一般会选择算式解法。引导学生列出两种不同的方程:(120+95)X=1262和120X+95X=1262,体会不同的数量关系式列出的方程也不同,沟通两种方程间的联系。
“练习与实践”第5题,引导学生体会列方程解决问题的思考方法,列出方程,解方程,验证答案;用转化的方法解决实际问题,体会转化策略的简捷。
“练习与实践”第6题,交流换算的方法,特别是厘米换成码数的方法,可以变换出新的公式a=(b+10)÷2,也可以用方程解答等等。
⑸谈谈本节课的收获。